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THE TORSION OF COMPOSITE TUBES AND CYLINDERS

Y. M. Kuo and H. D. Conway

Cornell University, Ithaca, New York 14850

Abstract—Exact solutions are presented for the Saint-Venant torsion of circular tubes and solid cylinders which
are reinforced by cylindrical inclusions of different material equally spaced around a concentric circle. The prob-
lems simulate those encountered in matrix rods reinforced by longitudinal fibers, and also in corresponding
problems of reinforced concrete. Formulae are obtained for the boundary stress distributions and the torsional
rigidities.

Stress function formulations are made for the torsion of cylinders having multiply 'connected composite
sections. Two systems of polar coordinates are employed, and use is made both of periodicity and symmetry.
Three degenerate cases—the respective torsion of a homogeneous tube, ring of circular rods and tube with
eccentric circular holes—are deduced for checking purposes. Several numerical examples are worked out and the
results presented in tabular and graphical forms.

1. INTRODUCTION

CoMPOSITE materials in which a relatively weak matrix material is reinforced by stronger
fibers have become of increasing technological importance in recent years. When struc-
tures fabricated from these materials are loaded, the effect of the relatively stiff fibers is to
restrain the deformations of the matrix and correspondingly large stresses may be in-
duced, particularly at the matrix/fiber interfaces. Similar stress and deformation analysis
problems are encountered in the design of reinforced concrete structures.

The present investigation is concerned with elastic torsion problems. Although the
torsion of homogeneous isotropic prismatic bars has been studied very extensively and by
numerous investigators, relatively little work has been done on the corresponding prob-
lems of cylinders consisting of two or more different materials bonded together. Muskhel-
ishvili [1] in his well-known book has developed a general formulation for the torsion of
composite cylinders in terms of the warping function, and has given two specific examples.
These are the circular cylinder reinforced by a single eccentric bar of different material
originally solved by Vekua and Rukhadze [2], and the rectangular bar consisting of two
different rectangular parts.

Vekua and Rukhadze [3] have also solved the torsion problem of an elliptical rod
reinforced by a confocal elliptical bar of different material. The corresponding problem
of an elliptical rod with a circular inclusion has been treated by Sherman [4]. Recently
Booker and Kitipornchai [5] have developed a method of solution for the technically
important problem of multilayered rectangular sections, but only the particular case of
two layers has been worked out in detail. The stress function formulation for the torsion
of composite material cylinders has been derived by Ely and Zienkiewicz [6], who have
worked out three examples by finite difference methods. These examples are a two-layered
rectangular cylinder, a square bar with a circular inclusion and a composite cylinder
with a circular hole.
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The problems mentioned above are either ones in which the cross-sectional boundaries
can be mapped conformally with relative ease, or ones in which the warping functions can
be expanded quite easily in terms of Fourier series. In contrast to these, Ling [7] has studied
the torsion of a circular bar with longitudinal circular holes using a special class of har-
monic functions, originally introduced by Howland [8], to take account of the multiple
boundaries. Numerical examples have been worked out for 2-hole, 3-hole and 7-hole
cases, respectively.

The present article concerns the technically important composite material of a circular
rod or tube (the matrix) which is reinforced by a ring of circular cross-section inclusions
(the fibers). The problem is also encountered in the torsion of a concrete bar reinforced by
longitudinal rods. The stress function for the matrix material is constructed in a manner
similar to that used by Ling [7]. The formulation and solution of a reinforced composite
tube are given in detail, the case of a reinforced rod being a special case of the former.
Perfect bonding is assumed to exist between the two materials and leads to an analysis
which is valid for any number of reinforcing inclusions.

2. FORMULATION OF THE BOUNDARY VALUE PROBLEM

Consider a circular tube with outer and inner radii a and 9, respectively. Let it be
reinforced by a ring of rods, made of different material, each of radius 4. The centers of the
rods are spaced uniformly on a concentric circle of radius, b, as shown in Fig. 1.

The centers of the inclusions may be located in the complex plane by the complex
variable

z=b eZmni/k (1)

F1G. 1. Circular tube having a ring of circular inclusions.
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where b is the distance from the center of the tube to the centers of the inclusions, k is the
number of inclusions and m=0,1,————— ,(k—1). The origin is taken at the center of
the tube.

The tube is made from a material with a shear modulus G, and the material of the
inclusion has a shear modulus G,. It is convenient to introduce the following dimension-
less parameters, and these are used throughout the investigation

b A A ) G,
R,=-, R,=Z%, Ry=%, R,=-, R=-22 2
1 a 2 a 3 b 4 a Gl ( )

The stress function @, for the matrix material expressed in terms of polar coordinates

(r, ) must satisfy Poisson’s equation

0, 100, 1 0%,

2 = _—t— — =
Ve, or? +r or +r2 06?

—2G,8 3)

where G, is the shear modulus of the matrix material and g is angle of twist per unit length
along the axis.

We construct the solution to (3) in the form

a0 @ B o0
@, 0= —3G Br+G,pa* Y A;r™cosnkd+G,pa* ) F{cos nk6+Gpa* ) CU, (4)
n=0 n=1 s=1
where A4,, B, and C, are parametric coefficients to be adjusted so as to satisfy the required
boundary conditions. The first term in (4) is a particular solution, and the series with co-
efficients 4, and B, are ordinary Fourier series expansions for an annular region.

For the boundary conditions at the matrix inclusion interfaces to be satisfied, another
system of harmonic functions with coefficients C, must be added. Since the system of
functions for a homogeneous tube must not have a singularity inside the boundary, there-
fore the added system must be different in that it possesses singularities inside the tube.
Such singularities will eventually be excluded from the matrix material by the inclusions.
In our case the inclusions are circular, and it is convenient to place the singularities at the
centers of the inclusions. This class of harmonic functions U first obtained by Howland
[8] and later on used by Ling [7] is defined by

W,=U,—iV, = —log(*- 1"

b AW, (5
W.=U—iV, = 2,
= U=V =91 ap
In terms of (r, 8) coordinates we may write
U, =k (nk—ll)( ) cos nk@ r>b
S p—

(6)
U, = (—1fk 3 ("k+s_ )(1) cosnkd  r<b
=0 s—1 b
as shown in the Appendix.

Note that U, is rejected in (4) because it is a multi-valued function.
Since @, is symmetrical with respect to the x-axis and periodic in # with a period

2n/k, we need only consider a segment bounded by % =>0=> —% as shown in Fig. 2.
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F1G. 2. Segment of shaft bounded by E >0> —% .

The stress function @, for the inclusions is expressed in terms of polar coordinates
(0, ¥) and must satisfy
0, 100, 1 0*@,

a2 = _2Gzﬂ (7)

vip, =2 "2, -T2, 0
2= 502 Tp o 0% Gp

where G, is the shear modulus of the inclusion material and f is the angle of twist per unit
length defined as before.
Assume

(p, ¥) = —4G,B(b + p* +2bp cos Y)+ Gfa? Y D(f) cos ny ®)
n=0

where the first three terms are particular solutions of the differential equation, and D,’s
are arbitrary constants to be determined by boundary conditions.
The boundary conditions to be satisfied are

r=a ® =0 9)
r=29, @, = constant = G,Ba’®, (10)

where @, is an undetermined constant.
At the matrix inclusion interfaces p = 4, we have

D, =0, 11)

1 od, 1 0D,
—_——= (12
G, dp G, dp

Equation (11) dictates that shear stresses normal to the interfaces be the same in each
material, and equation (12) ensures that the axial displacements are compatible on the
interfaces.
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3. SATISFACTION OF THE BOUNDARY CONDITIONS

To satisfy boundary conditions (9) and (10), ®, is rewritten in the form

[= o} a0 B
Q0= —3Gpr*+G,pa* Y A;r™cosnkf+G pa* —r;,;"cos nké
n=0 n=1

e}

P
Y r—n',"cos nké, r>b

+G,pa’ (13)

Y Q™ cosnkf, r<b
=0

where

nk—1

Po= k™ ¥ N

s=1
To apply boundary conditions (11) and (12), we transform ®, in terms of the polar
coordinates (p, ). Note that

(nk+s1 )Cs' (14)

k=
)Cs’ Q——,IZ( 1)5

re® =b+pe
and

nk nk k m

nk kO — Redp™® P _ pk nky\(p

r*cosn e{ (1+be ) } b mgo m)(b cos my
~-nk © m

. _ <kl P _1 _m|nk+m—=1}(p

r~— "™ cos nk# Re{b (1+be ) } b"k,..z::o( 1) ( ” 5 cos mys

also
r* = b*+p?+2bp cos Y.

Thus

Q5 = —3GB(b* +p* +2bp cos )+ G, fa* Y M,,,(%) cos my
m=0

+G,Ba* i Nm(%)mcosm¢+61ﬁa2{Lo+ i ( 2 +Lm£,..) cos m } (15)

m=0 m=1

where
* [nk
=Y (" )R’{"A,,a""
n=0 \M

o k -1\ 1 B
Np=(-1r Y (" o )ﬁa— (16)

n=1
L,=(=D"3 "aC,.

See Appendix for ). C,U; in (p, §) coordinates.

s=1
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Application of all the boundary conditions then leads to the following relations

A, =1

[

nk __
A a™ =

P
Q,a™R3"™ ——a”:)/ (1—R32™)
n>1

% — an( Qn ) / Rink)

P, = Q,+3(1-R3)

M+N +L, R-1
7 R?+R2
o R + 2R ( 1+ )
2C
D, = R?R2_—_~~1L _
1 1423 Rs(l—‘R)
2C

D, =—"" > 2.
"= ®-npRrRe "

From the above equations, with the aid of (14) and (16), we can express all the co-
efficients in terms of C,’s. The equations for the solution of C,’s are seen to be

= R+1
RE Y EiC, = o tCi+ RS

n‘=‘1 R 1 (17)
R"Y E"C,= T .. m>2

n=1 R-1

where

5 ( R Ik R\ [lh+n—1\ [lk—1
A (U e ]

(—1)mR2% (lk+m—1) [Rm(l:—l) _(_l)n(lk+n—1 ]}

TO-RRE  p O n—1
Equation (17) is an infinite system of linear equations which may be truncated and solved
by machine computation.

4. BOUNDARY STRESS DISTRIBUTIONS

Let 7,,, z,, denote, respectively, the radial and tangential stresses in the coordinates
(r,6) and 7., 1., the radial and tangential stresses in the coordinates (p, ). Subscript ““1”
will imply that the stresses are in the matrix and subscript ‘2"’ that the stresses are in the
inclusion material.

(i) On the boundary r = a

(t0); = (—&) = Glﬂal:l—2k i n(A,a™) cos nk()] (18)

ar n=1
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(ii) On the boundaryr = ¢

(1.0), = —a—;—‘)r = Glﬂa[R4+ i’i "i R"nk By s nko] (19)

(iii) On the boundary p = 1
(1), = ( ad") - Glﬂa(—szl él RII;n,;HCmsinml//) (20)
(T = ( 6p) = Glﬁa(Rz—R2 mil R, RmHC cosmn//) (21
(;%?2 - 1= 1/3a( 2_1_11 mil R, RmHC smmx//) (22)
(Tay) = ( a;:)p = GlﬂaR(Rz—Rz_l 21 RI;n,;HCmcos mw). (23)

S. TORSIONAL RIGIDITY AND EFFECTIVE SHEAR MODULUS

The twisting moment can be evaluated by

T— 2k[2f ®, dS; +2
St

where S, is the area shown in Fig. 3 excluding S, . The area S, is 1/(2k) times the total area
of the tube excluding all the inclusions, and S, is one half of the cross-sectional area of
an inclusion.

Substituting for ®, and ®, in the above expression and integrating term by term, we
obtain

@, dsz] +218%(G, fa’d,)

S2

T= —gcl Ba* — 6%) + G, fa*(a® — 6%) + 216°G , fa’®,
+ kG, Bb*A2n +gkc;1 it — 2Un2?G fa*(M,+N.)

—knAG,pb? —gnGzﬂl“ +2knA*G,pa’D,—2knibG Ba*C,. (24)

FiG. 3. 1/(2k) of the total cross-sectional area.
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It is convenient to introduce an effective shear modulus G, defined by

T e
G,= — (25)

4
5Bt =5%)

where T is given by (24). Substituting for T in (25) and writing in dimensionless form, it
follows that

RZ
e _r [(1 _ R +4R20, + 2kRY(1 —R)(Rf+72)
s
! EGlﬂ(a4_54)
+4kRYD,R—M,—N,) —4kR1R2C,} / (1—R%), (26)

6. DEGENERATE CASES
(i) G,=G,=G, orR=1.

For this case, the following equations are found

Q,=0. P=0,=0 nxl

Aa* = — =0, n>1

a
(Dozé(l_Ri)
M,=D,=% N,=L,=0
M,=N,=L =0, mx>1

Substituting all these values in (18), (19) and (24), we obtain
(1,9, =GPa atr=a
(T.9)y = GBS atr =20

and
ﬁ = (1= RY)
This is the solution for the torsion of a homogeneous tube.
(i) G, =0, orR= 0.
Equation (23) gives
(Tzw)z = G,faR, = G,fA atp= A
Equation (24) gives

T= ngzﬁi“.
This is the torsion solution for a ring of k bars.
(iii) G,=0, orR=0
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We have from (18), (19) and (21)

(1.0 = G Pa| 1 -2k Y n(A,a™) cos nk()J atr=a

n=1

2k & n B,
(.01 = G,Pa R4+'§" Z

nk nk
. 4 n= lR

cos nk@] atr =90

(T, = Glﬁa R,+2 Z

R;"“C cosmt}/] atp = A

From (24) we obtain
T i 2 2 2{ p2 R 2
m = 5(1 R)+27Ri®, +knR3I R{+ +2knR¥D,R— M, —N,)—2knR,R,C,
1
where
®, = Q,+3(1-RY
and
D,R = M,+N,+L,—4R}+R3).

This is the torsion solution for a circular tube with longitudinal circular holes which was
solved by Ling [7]. Note that (M, + N ) is set approximately equal to 4 in Ling’s paper.

7. NUMERICAL RESULTS AND DISCUSSIONS

A computer program based on the foregoing analysis has been written and the nu-
merical results have been obtained by machine computation. As illustrated, the torsional
rigidities and boundary stress distribution for the following three cases are obtained and
given in tabular and graphical forms:

b3 A1 8 1 G
D2=2 278 a-72 g k=%
b 3 11 & 1 G,
W2=%2 278 -2 g > k3
b 1 A1 é G
(m)——— —=2, -=0, 2=30, k=4
a 4 a G,

These cases represent, respectively, a tube reinforced by eight relatively rigid fiber in-
clusions, a tube reinforced by three relatively flexible inclusions and a solid cylinder
having four large rigid inclusions.

The effective shear moduli ratios for the above three cases are given in Table 1. As a
partial experimental verification a torsion test was carried out on a solid 1 in. dia. epoxy
rod reinforced by four % in. dia. brass rods corresponding to case (iii) above. The shear
moduli obtained from torsion tests on completely epoxy and brass bars were 170,000
and 5 x 10° psi, respectively, and thus g— = 29-4, The value of g— obtained from the

1 1
torsion test on the reinforced rod was 1-53, and this agrees very well indeed with the
theoretical value of 1-57 given in Table 1.
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e

G
TABLE |. EFFECTIVE SHEAR MODULUS RATIO G

G G
Z h ] k a4
a a G, G,
Case (i) 3 H 1 30 8 1-2330
Case (ii) 3 1 1 5 3 1-0466
Case (iii) 3 i 0 30 4 1-5706

The boundary shear stress distributions for the above three cases were computed and
are shown in Figs. 4, 5 and 6, respectively. It will be observed that the tangential shear
stresses (7,0);, on the inner boundaries r = ¢ always have minimum values at 6 = 0, that
is, at points nearest the inclusions. These stresses increase as 8 increases, reaching maxi-
T
k,

In the matrix, the boundary shear stresses normal to the matrix/inclusion interfaces
are bigger than those tangential to the interfaces. This statement may or may not be so

mum values at =, that is at points at greatest distances from the inclusions.

. . . . G .
for the stresses in the inclusion depending on the 63 ratio.
1
It would appear that the shear stresses (t,,), and (z,,), normal to the interfaces attain

maximum values at Y > 90°, and are zero at = 0 and 180°. The stresses (t,,), and
(t.y), tangential to the interfaces have maximum values at ¢ = 0°, and decrease gradually
as ¥ increases ; they may have negative values if G, is not much bigger than G, as shown
in Fig. 5.
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It might appear that the greatest boundary stress in the matrix occurs on p = 4. How-
ever, additional calculations have shown that such is not always the case. For example,
when

| Q

b A 0
= - - =0, 2=5 and k=3
a a a

1 1
25 4’

@

the greatest boundary matrix stress occurs onr = a.
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APPENDIX

A class of harmenic functions for a ring of circular boundaries
Consider the z plane with a series of k points located by

z = b ik (A1)

wherem =0,1,2,————— ,(k—1)
A function with a logarithmic singularity at each such point is defined by

W, = —log(z*—b"). (A2)

The power series expansion of W, about z = 0 according to |z| > b and |z| < b is con-
structed in the following manner

W, = —log z* 1——{)f = —klo +ilé"k |z| > b (A3)
o g Zk - gz "=1nZ s

and

1
n=1n

. Zk @ z nk
W, = —log[e_'"bk(l—g,; ] = in—klogh+ ¥ _(5) . lzl<b (Ad)
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where W, is defined as

b d°W,
= — 0. AS
oo (s=1)! ab (A3)
Differentiating (A3) and (A4) s times and substituting in (AS5), we obtain
© [nk—1\[b\™
= z A
W, k,,g‘l(s—l)(z) . ld>b (A6)
and
nk
W, = (= 1k Z ("k+s )( ) . lzl<b. (A7)
Note that z = r €. Taking the real part of W,, it follows that
_kz (s—l)(b cosnkfl, r>b (A8)
nk
U, = (—1yk Z ("k“ )(l-')) cosnkd, r<b. (A9)
To find the expansion of W, about z = b, we rewrite
k-1
W, = —log(z—b)— Y, log(z—b &*™ ).
m=1
Differentiation of W, s times then gives
dsu/o _ (S— 1)1 k-1 (S— 1)!(82imu/k)s
db* - (Z—b)s = (Z_beZimn/k)s '
Again,
bs dsW b (eZimn/k)s
= ® = . Al10
W=G6oDi ar b ,,,Zl (z zl.m,,‘)s (A10)
5 ¢

Note that z = b+{, { being a complex variable referred to an origin at z = b. It then
follows that

bs k-1 2imnfk\s
E+ Z .__C____(e—)s
m=1 (B+1_e2imn/k)
Setting 1 —e?™™* = 1/u,,, we obtain
W= 24 3 (— 1y (A1)
C n=0 b
where
n, = ("“_1 Z (108"

+S—l) i (_I)g(i —Zl u:'+s—t

t=0
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or
—1\ &
"as=("“ )z<—1)'(5) Guvsmi (A12)
n Bt t
where
k=1
Opts—1 = Z u:.n+s_" (A13)

Setting { = p ¢ in (A11) and taking the real part of W,, we obtain
bS [ &) n
U, = Ecos s+ Y (=" .

n=0

s gr 08 ny. (A14)

Therefore, Y C,U, expressed in terms of (p, ) coordinates is

s=1

=] 9] o) bm e o] m
Y CU,= Y 2 Ci+ Y. {cm—m+[(—l)'" ) '"asCs]B;} cos my
s=1 s=1 m=1 P s=1 b
or
oc e o) bm pm
Z CsUs = Lo+ Z Cm'p'7,+Lmi;;, cos m‘// (AIS)
s=1 m=1
where
L,=(-1"Y "aC,. (A16)

s=1
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AGcrpakt—/laloTca cTporue peienua ansa kpydeHus CeH-Benana kpyrjiux Tpy6 u CIUIOWIHBIX HMIMHADOB,
YCHACHHBIX LHIMHAPHYECKHMH BXJIIOYEHHAMH M3 DPa3HOro MaTepuana, OAMHAKOIO paclOJIOKEHHOTO
BOKPYI KOHIEHTpHYeckoro kpyra. [NocrasaeHnbie npobaeMs MOLEAHPYIOT 3aAa4YK, KOTOPbIE BCTPEYAIOTCA
B MAaTPHYHBIX CTEPXKHAX, YCHJIEHHBIX MPOJAO/BbHBIMH BOJIOKIIAMH H, TAKXE, B COOTBETCTBYIOLIMX 3aAavax
xene3oberona. TMNMonyyarorcs ¢opMyabl ans pacnpeneieHHd TPAHKYHBIX HANPSXKEHWH W KecTKocTel
KpYy“eHHus.

Jatotca dopmyibl QYHKUNH HANPAXKEHHUIH A8 KPYUEHHA LMJIMHAPOB, 001aAa0LKMX MHOTOCBA3AHHBIMY,
COCTaBHbIMH CEYCHHAMH. [IPHMEHAIOTCA OBE CMCTEMBI MOJAPHBIX KOOPAHHAT, HCTIONBL3YIOTCA W TIEPHOI-
HYHOCTb H CHMMETpHA. [lna NMOATBEPXKAEHWA BBLIBONOB, BBIYMMTBIBAKOTCA TPH BbIPOXKIACHHbIE 3aACHH:
COOTBETCBTEHHOE Kpy4YeHHE KpYrnoi TpyObl, KOJAbLUO KpPYIJBIX CTEPXKHEH M Tpyba ¢ IKCHEHTPHYHBIMH,
KpYIJIbIMH OTBEpCTBHAMM. Pa3paboraHo HekoTOpbie 4HC/IEHHbIE MPUMEpb. [laloTcs pelynbTaThl B BUAE
Tabnuu u rpaduxos.



